Phase-field modelling of microstructural evolution in primary crystallization
نویسندگان
چکیده
One of the main routes to obtain nanostructured materials is through the primary crystallization of metallic glasses. In such transformations, crystallites with a different composition than the amorphous precursor grow with a diffusion-controlled regime. Particle growth is slowed and eventually halted by the impingement between the concentration gradients of surrounding particles. Primary crystallization kinetics is not well described by the KJMA equation, and this fact was generally ascribed to both the soft-impingement effect and the non-random nucleation. However, recent phase-field simulations showed that the underlying physical reason is the change in the local diffusion properties of the amorphous precursor due to the variation of the composition during the transformation. The kinetics of primary crystallization is thus well described by considering a diffusion coefficient of the slowest diffusing species dependent on the local concentration. The nanostructure developed in such transformations is a key point to explain the macroscopic properties of these materials. In this work the grain size distributions obtained in realistic phase-field simulations of transformations with continuous nucleation and both constant and variable diffusion coefficient are presented. The obtained distributions are analyzed and the physical mechanisms responsible of their different features are recognized. PACS codes: 81.10.Aj, 64.70.Kb, 81.30.Hd, 66.30.Pa, 07.05.Tp
منابع مشابه
Effect of Mechanical Alloying and Sintering on Phase Transformation, Microstructural Evolution, Mechanical Properties and Density of Zr-Cr Alloy
The purpose of present research was production ofZr-based alloy as the nuclear fuel cladding by mechanical alloying (MA) and sintering process. Firstly, Zr and Cr powders were mechanically alloyed to produce the refractory and hard Zr-10 wt% Cr alloy, and then, the powder mixtures were consolidated by press and following sintering at temperature of 800˚C min. The phase evolution, microstructura...
متن کاملThree-dimensional phase field simulations of grain growth in materials containing finely dispersed second-phase particles
Phase field modelling has proven to be a versatile tool for simulating microstructural evolution phenomena, such as grain growth in polycrystalline materials. However, the computational requirements of a phase field model impose strong limitations on the number of phase field variables employed in a practical implementation. In this paper, a bounding box algorithm is proposed allowing the use o...
متن کاملThe effect of time and Co2+ dopant on phase evolution, microstructure and optical properties of CuInS2 nanoparticles synthesized by hydrothermal method
In this research, with use of copper chloride, indium chloride, Thiourea (source of sulfur) and deionized water as solvent, using hydrothermal method at 180 ° C and at time of 4, 6, 8, 12, 14, 16, 18 and 20 hours, the composition of CuInS2 nanoparticles was synthesized by Stoichiometric ratio of (1: 1: 2), and in the next step, this compound (CuInS2 ( with cobalt additive at 180 ° C and at tim...
متن کاملGeochemical evolution and petrogenesis of the eocene Kashmar granitoid rocks, NE Iran: implications for fractional crystallization and crustal contamination processes
Kashmar granitoids of Taknar zone, in north part of Lut block, intruded into volcanic rocks and consist of granites, granodiorites, monzodiorite and gabbrodiorites. They are composed of mainly plagioclase, alkali-feldspar, quartz, amphibole, biotite and pyroxene minerals. Harker diagram variation, including negative correlations CaO, MgO, FeO, TiO2 and V and positive correlations K2O, Rb, Ba, a...
متن کاملInvestigation of Ca in the Microstructural Evolution and Porosity Analysis of ZK60 Alloy in As-Cast and Extruded Conditions
This research work has been carried out to study the effect of different Ca contents (0.5, 1.0, 1.5, 2.0 and 3.0) on the microstructure and porosity content of ZK60 alloys. The samples were examined by using optical and scanning electron microscopy (SEM) to evaluate the modification efficiency of the alloy with different Ca concentrations. The cast specimens were modified, homogenized and extru...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2007